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Similarity rules for thin aerofoils in non-stationary 
subsonic flows 
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Similarity rules are constructed for the load distributions induced on a thin 
two-dimensional wing at  subsonic speeds by sinusoidal gusts whose wave fronts 
are at  an angle to the leading edge of the wing. It is shown that these rules divide 
into two groups according to the value of a parameter dependent on the Mach 
number and the angle between the gust front and the wing. The similarity rules 
for each group relate all the members of the group to a simpler problem whose 
solution can be found by existing methods. The similarity between the two groups 
is also discussed in terms of the two methods of solution available and it is shown 
that each method of solution is applicable in all cases. 

1. Introduction 
The calculation of the load distributions induced on a wing in a turbulent 

airstream usually proceeds from the simpler loading problem associated with the 
passage of a similar wing through a sinusoidal gust whose wave fronts are at  an 
arbitrary angle to the leading edge of the wing. Under the conditions, outlined 
below, for which linear analysis is realistic the loading induced by an oblique 
sinusoidal gust is a double Fourier transform (with respect to time and one spatial 
co-ordinate) of the loading induced by turbulence or other more general gusts. 
As a result this problem, referred to hereafter as the oblique sinusoidal-gust 
problem, is relevant to a wide range of problems involving non-stationary 
aerodynamic loading. It is particularly relevant to calculations of the response of 
large aspect-ratio wings and helicopter rotor blades to turbulence and wakes, and 
in connexion with noise generation in compressors. 

In  general a gust encountered by an aerofoil will have local velocities of 
arbitrary magnitude and direction. Thus, as in figure 1 (a),  the aerofoil flying 
horizontally at speed U and incidence 01 will experience a relative velocity U, 
having components U + 'u in the line of flight, w vertically and v in the spanwise 
direction. Within the framework of linearized aerofoil theory, for which the 
thickness of the aerofoil, its incidence and camber and the gust velocities are all 
assumed small, the effect of the spanwise velocity component v may be neglected. 
Neglecting second-order small quantities the situation can be simplified to that 
shown in figure 1 ( b ) ,  and two first-order components of loading identified. These 
are a stationary component due to the mean relative upwash arising from 
incidence and camber, and a non-stationary component due to the upwash w. 

-f Present address : Department of Aeronautics, Imperial College, London. 
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7 54 J .  M .  R. Graham 

Under the condition Iw1 < IuI, the only non-stationary component may be a 
second-order small quantity dependent on the combination ua. This, however, 
divides into a quasi-stationary component resulting from the total chordwise 
velocity U + u, which is readily calculable from stationary aerofoil theory, and 
a non-stationary component due to the relative upwash UOL which may be treated 
like w. When the problem is linear these load distributions may be calculated 
separately and summed to give the whole loading. In  this paper we are concerned 
only with the non-stationary component arising from the upwash w normal to 
the plane of the aerofoil. 

- -- - - - _  
(4 

z (upwash direction) 

U(a-loca1 camber) +w + [ ual 

Aerofoil Wake 

U+u-I wal 

(b) 
FIGURE 1. (a) Relative velocity components of a gust. 

(b) Linearized velocity components. 

The oblique-sinusoidal-gust problem may be visualized as a corrugated sheet 
of vertical velocities travelling at  speed U in the plane of the aerofoil as shown in 
figure 2. The corrugations have wavelengths 2z/h and 2 7 ~ 1 , ~  in the chordwise and 
spanwise directions respectively and lie at an angle (tan-l,u/h) to the leading edge 
of the aerofoil. Primarily we are concerned here with the unswept subsonic wing, 
in which case the velocity of translation U ,  assumed uniform and subsonic, is 
at  right angles to the leading edge of the aerofoil. 

The purpose of the present paper is to simplify this generalized problem, 
outwardly dependent on three non-dimensional parameters (Mach number and 
two wave-number parameters) by relating it to one or other of two lower-order 
problems involving only two out of the three parameters. These simpler problems 
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are special cases of the general problem, being respectively the case when the flow 
is incompressible and the gust oblique, and the compressible case for which the 
gust wave fronts are parallel to the leading edge of the wing. In  the notation of 
figure 2 these are respectively the cases ( M  = 0, A, p) and ( M ,  A,  p = 0)  and are 
referred to hereafter as incompressible oblique and compressible two-dimensional. 

The simplest convected gust problem of all, that for which the flow is both 
incompressible and two-dimensional, has an analytical solution (Sears 1941). This 

FIGURE 2. Diagrammatic drawing of an oblique sinusoidal gust. 

solution depends upon the linearization assumptions of thin-aerofoil theory with 
additional assumptions that both the gust and the wake vorticity are convected 
as frozen patterns at  the free-stream speed and that rotationality in the free 
stream is unimportant. These assumptions are carried over into the three- 
dimensional compressible-flow analysis given here and therefore limit the range 
of validity of the analysis to small disturbance flows over thin aerofoils. 

In  the notation of figure 2, the conditions for linearization of the time-dependent 
equations for the velocity potential in subsonic flow are set out by Miles (1959, 
p. 8, table 1). They are (a )  8% < 1 - M, where 8 is the ratio of a characteristic 
displacement of the streamlines to the chord c of the aerofoil, (b)  k = O(P2/M2),  
and (c )  v = O(p).  Here = 1 - M2,  and k and v are the reduced frequency 
parameters +Ac and &pc respectively. 

Corrections to the potential-flow analysis for free-stream vorticity are discussed 
in a paper by Hunt (1969). This paper implies that for thin-aerofoil problems for 
which 6 << 1, the free-stream vorticity may be neglected provided that variations 
in the mean-pressure field of the body are small compared with the total pressure 
in the free stream. This therefore limits the present analysis to lightly-loaded 
aerofoils. 

The majority of aerofoil gust interactions and allied problems are concerned 
with the convection of either discrete gusts or random disturbances, i.e. turbu- 
lence, past the aerofoil. It is usual in dealing with such phenomena to assume that 
these disturbances remain relatively frozen in a frame of reference mming at  the 
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mean velocity of the fluid. That is, changes in the convected upwash pattern in 
the plane of the aerofoil and the wake only occur over distances much greater 
than the chord of the aerofoil. This is referred to as the frozen convection 
assumption. 

This assumption is valid for turbulent flows when the times for significant 
viscous dissipation and turbulent diffusion of an eddy are much larger than the 
time for the eddy to travel one chord length. Following Hunt's (1969) analysis 
this yields for the thin aerofoil gust problem the conditions that 

and 

The second condition is already a requirement for linearization. 
It is not impossible to analyze the effect of sinusoidal gusts convected at speeds 

different from that of the free stream, although convection at  the free-stream 
velocity will be assumed throughout the analysis given below. But the validity of 
linearization, and hence its associated conditions, are vital to the analysis of 
aerofoils in turbulent flows, since without this particular assumption Fourier 
analysis cannot be used and the problem passes beyond the limits of present-day 
tractability. 

For the incompressible two-dimensional problem Sears adopted as his model 
for the potential flow, a distribution of vortex singularities over the aerofoil and 
in the wake. The singularities in the wake are required to conserve vorticity in 
the entire field. In  this way a solution can be obtained by satisfying the upwash 
boundary condition on the chord line of the aerofoil in terms of these singularities. 
It is important to distinguish these vortex singularities on the aerofoil and in its 
wake from the free-stream vorticity which is neglected in this analysis. The same 
approach was used by the present author (Graham 1970a) to obtain the solution 
for the incompressible oblique gust (the two-wave-number problem). That paper 
was mainly concerned with an efficient reduction method of solving the singular 
integral equation for the upwash boundary condition and computing a numerical 
series solution. An approximate analytical solution to the same problem, accurate 
asymptotically at high and low wave-numbers, has also been obtained by Filotas 
(1969). 

The unsteady, compressible, two-dimensional thin-aerofoil problem, as a flutter 
problem, was first analyzed by Possio (1938). He formulated it in terms of an 
integral equation for the load distribution on the aerofoil and gave an approxi- 
mate solution. This approach led to several successively refined approximate 
methods of solving the problem, of which one of the best is that of Fettis (1952). 
His method isolates the singular part of the integral equation, approximates the 
remainder of the kernel function linearly and exactly inverts the resulting integral 
equation. This process constitutes in effect a first approximation to the complete 
numerical method of solution developed for the incompressible oblique gust case. 

Reissner (1951) gave an analytic solution of the same compressible two- 
dimensional problem, again for a flutter rather than gust boundary condition. By 
transforming the linearized perturbation potential equation into elliptic co- 
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ordinates he found a separable circulatory solution satisfying the boundary 
conditions. This method is exact but very lengthy to compute. However, the 
transformation used in this method forms the basis of the similarity rules which 
are presented below. These similarity rules relate the general three-parameter 
problem (compressible oblique) to the two simpler two-parameter problems, 
incompressible oblique and compressible two-dimensional. 

In the second part of the analysis given below, the similarity between these 
latter two problems is discussed and it is shown that the same methods of 
solution are applicable to both. 

2. Similarity rules for thin aerofoils in subsonically convected oblique 
sinusoidal upwash patterns 

By making the assumptions listed in 5 1 a perturbation velocity potential $ 
may be defined in the usual way. That is, if U, is the undisturbed free-stream 
velocity, the velocity field in the vicinity of the aerofoil is Urn+V$, where 
IVq5l < IU,I except near discontinuities of the aerofoil’s surface slope. On sub- 
stituting $ into the continuity equation and assuming that the linearization 
process is valid, the equation 

is obtained. In this equation suffices denote differentiation with respect to the 
appropriate co-ordinates and a is the speed of sound in the free stream. 

For a thin flat aerofoil lying in the plane x = 0 and with its mid-chord line 
along the y axis, the linearized boundary condition that the velocity is tangential 
to the aerofoil surface is 

(U,.n+y5,) = 0, x = 0, -4c < x < Qc; (2) 

n is here a unit vector parallel to the x axis. 

velocity U 
For an oblique sinusoidal vertical-gust convected at the mean free-stream 

Urn = (U,O,w,exp[i(wt-Ax-pt~)]}, where w = AU. 

In  this case equation (2) becomes 

$, = -w,exp[i(wt-Ax-py)], x = 0, -+c < x < Qc. 

Equations (1)  and (3) are compatible with a potential # of the form 

$ = @(x, 2) exp [W-py)l .  

Substituting this into (1) gives 

(1 - N2) q5kx + $; - (2iwM/a) $I + ((w2/u2) -p2) q5’ = 0. (4) 

Now, following Reissner (1951), we make the transformations 

@ = exp [ - ikM2x*/P2] #’, x* = 2x/c, z* = 2Pz/c and y* = 2y/c. 
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Writing Y = i p c ,  Ic = gwc/U = Qhc and K = IcM/p2 we obtain the equation for the 
potential in the transformed ' Prandtl-Glauert ' plane 

CD,,,, + Q,,,,, + ~ 2 ( i  - 1/82) Q = 0, (6) 

where 8 is the gust parameter IcM/vp. 
The boundary condition (3) on the aerofoil is, in this plane, 

Qz, = -(&~,,c/P)exp[-ik~*/p~] (x *  = 0, - 1 < X* < 1). (6) 

With the assumptions made earlier the equation for the pressure may also be 
linearized. The pressure coefficient C, derived from this linearized pressure 
equation is given in the transformed system by 

C' = - ( 4 / U c )  exp [iIcM2x*/p2] {ikCD/p2+ Q,,]. (7) 

The flow model used in the above analysis represents the effect of the aerofoil 
as a potential perturbation of the free stream. This potential is discontinuous 
across the aerofoil and, since the flow is non-stationary, also across the wake, 
assumed here to lie downstream of the aerofoil in the x = 0 plane. Boundary 
conditions to define the problem are therefore not only necessary over the aero- 
foil but also over its wake and at infinity. The first of these boundary conditions 
has already been given. The second is that Ap, the pressure discontinuity across 
x = 0, is zero over the wake. Or, from ( 7 ) ,  

A( ikQ/p2+Q,p)  = 0 (x* > 1). (8) 

The third boundary condition, at infinity, takes two different forms depending on 
whether the potential equation (5) is elliptic or hyperbolic. In  the former case 
(6' 6 1) the boundary condition may be taken in the form 

Q + O  as ( x * 2 + x * 2 ) + c o .  ( 9 a )  

That is disturbances die away at  infinity. But in the latter case (8 > 1)  it becomes 
necessary to prescribe that signals are radiated outwards from the aerofoil toward 
infinity without reflexion. In this case the boundary condition can be taken in the 
form 

where r2 = x * ~  + x*2 .  Finally, for any subsonic flow the aerofoil circulation can 
only be fixed by specifying the additional Kutta condition that Ap = 0 at the 
trailing edge. Therefore (8) may be rewritten 

exp [iK( 1 - l /Oz): r ]  Q -+ 0 as z* -+ & co, (9b)  

A(ikQ/p'+ Qz*) = 0, X* 2 1.  (10) 

We now consider the different types of solutions of (5) together with these 
boundary conditions, corresponding to values of 6' greater than, less than or equal 
to one. 

2.1. Subcriticaljows: 6' < 1 

Equation (5) has the form Q,,,. + @>,,,, - x2Q = 0, (x real) for all flow fields in this 
group. It follows from this that given any member of this group it is possible to 
find an infinite number of other members having similar Q distributions, differing 
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at most by a constant multiple. The requirement for this to be so is that they all 
give rise to the same potential equation and boundary conditions for @. It is clear 
therefore from the analysis above that these similar flows must lie in ( M ,  k, v) 
space on the lines x = constant, k/P2 = constant. Each member of the group will 
have only one such line passing through it and each line will intersect the surface 
8 = 0 once only. This surface 8 = 0 consists of the incompressible oblique 
members of the group. Therefore each member of the group is similar to an 
incompressible oblique problem (6' = 0,  subscripted 0 below), i.e. Mo = 0 and wo 
(upwash) = exp [i(wot - hoz -pOy)].  The set of similarity rules relating the flows 
to satisfy equations (5), (6) and (10) are 

(11) 

and therefore from (7) the relationship between the loading coefficients per unit 
upwash is 

i 
Mo = 0, 

k, = k /P2 ,  
v, = v( 1 - ez)+/p, 

C A p ( M ,  k, v, = cApo(o, k /p2,  v(l -ez)4/p) 
1 

x - exp [i[kM%*/p2 + v{( 1 - 82)+/p - 1} y*]]. (12) 

The boundary condition (9) a t  infinity is automatically satisfied both for these 
cases and the supercritical cases which follow. 

P 

2.2. Supercritical pows: 8 2 1 

Equation (5) has the form QZaZ* + @z.z* + xz@ = 0, and therefore in the case of the 
supercritical group each member of the group is similar to a compressible two- 
dimensional problem (0 = 00, subscripted 03 below), i.e. 

M, + 0 and w, = exp [i(w,t - h,z)]. 

The similarity rules for this group are 

(13) 

k2) ,  O}  

(14) 

I 
I 

N, = ~ ( 1 -  i/e2)+, 

k ,  = k( 1 + v2/k2) ,  

v, = 0, 

CAp(MM, k ,  V )  = CAP,{M( 1 - 1/ez)+, k( 1 + v / and 

x (1 + v2/k2)* exp [iv( vz*/k - y*)]. 

Both sets of similarity rules overlap at 8 = 1 to give 

(15) 

(16) 

Ml = 0, 

kl = V P 2 ,  
v1 = 0, 

and C A p ( M ,  k, v, = c&pl(O, k/Pz> O )  (l/P)exp [ i (kM2z*/P2-  vY*)lt 
i.e. at  8 = 1 the flows are similar to the incompressible two-dimensional case whose 
solution was given by Sears (1941). 
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2.3. Remarks on the similarity rules 

For stationary flows (i.e. A, w = 0) the appropriate similarity rule (0 < 1) reduces 
to the Prandtl-Glauert transformation between corresponding compressible and 
incompressible flows. This transformation of the spanwise reduced frequency v is 
correct to second order in 0 for all flows in the subcritical group. 

The physical significance of the parameter 8 which characterizes a particular 
case as subcritical or supercritical may be seen as follows. 

By a suitable transformation to moving axes it is possible to convert the 
non-stationary oblique-gust problem into a stationary problem (see figure 3). 
Filotas ( 1969) has approximately analyzed the incompressible oblique probIem 
by this method. The flow is stationary relative to axes moving in the spanwise 
direction a t  the ‘trace velocity’ of the intersections of the nodal lines of the gust 
with the leading edge of the aerofoil. The trace velocity is U k / v  relative to the 

// 
Stationary ~ 

~/ 

7 
@tern 

FIGURE 3. The transformation from a non-stationary to a stationary system. 

aerofoil and therefore the velocity of the free stream relative to the moving axis 
system is U(  1 + k2/v2)*. If, however, the fluid is compressible the free-stream 
Mach number relative to this system is M‘ = M (  1 + k2/v2)*. Values of the gust 
parameter 8 < 1 or > 1 correspond respectively to values of this Mach number 
M’ < 1 or > 1. Therefore under this transformation to moving axes the oblique 
gust problem is converted to the stationary problem of a twisted swept wing with 
subsonic edges in a subsonic or supersonic free stream. Alternatively, in the 
original co-ordinate system values of 0 < 1 or > 1 correspond respectively to  
flows in which the spanwise velocity of sound waves is greater or less than the 
spanwise trace velocity of the nodal lines of the gust. 

Both the wake boundary condition (10) and the upwash boundary condition (6) 
define a (k, p)  relation for similarity to be possible. In general it is only in those 
cases for which the ‘ free-stream-frozen-convection assumption ’ can be made that 
these two relations are the same (k//32 invariant). The reason that this is so in the 
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frozen-convection problem is a result of the fact that both w over the aerofoil and 
4 over the wake are stationary in a reference frame moving with the free stream. 
This condition does not apply to the relative upwash for many classes of non- 
stationary flows, in particular those involving flutter. Similarity rules between 
flows having the same type of upwash cannot therefore be constructed in such 
cases. 

The similarity rules above are for unswept aerofoils. But the same analysis can 
be applied to aerofoils of arbitrary sweep. In this case it is found that the same 
similarityrules apply if M and k are now defined respectively as the Mach number 
and reduced frequency in the direction normal to the Ieading edge and v is the 
reduced frequency in the spanwise direction. Alternatively if M ,  k and v are 
defined in terms of axes aIigned with the free stream and I? is the sweep angle 

(k cos r - vsin r) M cos I? 
(k sin r + v cos r ) (1 - M2 cos2 r)4 e =  I 

The similarity rules are, in addition, not restricted to isolated aerofoils, but may 
also be applied to linear cascades with the appropriate additional similarity rule 
for the spacing ratios. Similarity rules may likewise be constructed for supersonic 
flight through gusts, but are not considered in this paper. 

2.4. T h e  shape of the induced load distribution 

A further important consequence of the frozen-convection assumption implies 
a simplification in the expression for the load distribution. 

Consider the function II(x*, z*)  = ( ik /P2@ + (D.,.), which is equivalent to an 
acceleration potential in the Prandtl-Glauert plane. This function is continuous 
everywhere except with respect to z* across the aerofoil and with respect to x* 
at the leading edge. The equation for the potential @ ( 5 ) ,  together with its 
boundary condition equations (6), (9) and (10) may be rewritten in terms of II as 

II,*,* + rIZCZ. + K2( 1 - 1/62) n = 0;  

r I = o ,  z * = o ,  x * > l ;  

r I + O  as ( X * ~ + Z * ~ ) + O C ) ,  0 6 1; 

or exp[iK(1-1/82)tr]rI+O as z*+kco,  ? = ~ * 2 + z * 2 ,  8 >  1; 

where O,, 0- are understood to mean that a limit is taken as z* approaches z* = 0 
from above and below respectively, in order to take into account the discontinuity 
acroas z* = 0. Because these boundary conditions for II are homogeneous there 
exist an infinite number of similar solutions to these equations. The reason for 
this is that the boundary condition for 112* on the aerofoil is less strong than the 
original boundary condition (6) for QZ* on the aerofoil. An additional boundary 
condition on II is required to account for this. This condition can be taken in the 
form w c  -1 

exp [ik/PZx*] II,,dx* = - 0 
2P ’ 
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which fixes the remaining multiplicative constant in the solution for IT. In 
consequence An has the general form on the aerofoil 

An(%*) = F ( M ,  k,  V) G{x*, K (  1 - 1/82)6}, 

and therefore from (7) 

CAP(x") = - ( ~ / U C )  F ( M ,  k ,  V) exp [ ikJ12~*//32]  G{x*, K( 1 - 1/82)i}. 

Applying this result to the similarity rules we obtain the following functional 
forms for the subcritical and supercritical load distributions: 

e G  1: 

C A p ( M ,  k, v, X*, y*, t ,  

= (l/p) f o { O ,  k /p2,  (1 - 8z)*/,8}go{v( 1 - Oz)* /P,  x*} exp [i[wt + kM2x*/P2 - vy*]] 

and8 > 1: 

C A p ( M ,  k ,  v, %*, y*, t ,  

= (1  + v2/k2)* f , { M (  1 - l/02)J, k( 1 + v2/k2) ,  O}g,{(kM/p2) (1  - 1/02)*, x*} 

x exp [i[wt + kM2x*/p2 - vy*] 1, 
where all the independent variables of each function are listed in parentheses 
immediately after it. Since f,, and f, are independent of x*, they may be taken as 
the appropriate lift coefficients C,(M', k', v'). Their form is compatible with the 
additional boundary condition for IT given above. 

For the case of an incompressible fluid this implies that the shape of the load 
distribution and hence the centre of lift depend only on the spanwise reduced 
frequency v. Cicala (1951) showed that this was true for the incompressible two- 
dimensional problem ( M  = 0,  A,p = 0). From this there follows the surprising 
result that the load distribution induced on an aerofoil travelling through any 
frozen two-dimensional upwash pattern has at  all times the flat-plate 

[( 1 - x*) / (  1 + %*)I4 
or 'cot 48' shape, when compressibility is negligible. 

2.5. The sonic limit of the similarity rules 

The proper linearized equation for the unsteady potential at  transonic speeds 
for k = O(1) is 

(for example, Landahl 1961). An analytical result for the pressure distribution 
induced by an oblique sinusoidal gust in the limit M = 1, is readily derived from 
this equation as 

All/ + $22 - 24xt - A t  = 0 

C,,W = 1, k ,  v, X*, y*, t )  

= [2( 1 - i )  exp (ik)/{nk( 1 + x*)}$exp [i{wt - $k( 1 - v2/k2)  (1  + x*) - vy*}]. 

When iM -+ 1 the gust parameter 8 --f 00 for all finite values of v /k .  Although 
equation (5) for the potential in the transformed plane is not strictly applicable 
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in the transonic rbgime, the sonic limit of the supercritical simila.rity rule derived 
from this equation does give the correct relationships for the appropriate pressure 
distributions given above. 

3. The similarity between the sub- and super-critical groups 

A certain mathematical similarity also exists between the sub-critical and 
super-critical flows considered above. In  view of the previous analysis it is 
sufficient to compare the two extreme cases, incompressible oblique and com- 
pressible two-dimensional. 

For the first of these the equations governing CD are 

o.,*,* + a)&* - v2@ = 0, 1 ( 1 7 )  

1 (18) 

CDZ1=-~wcexp[-ikx*], z * = O  ( - 1  < x * <  1)) 

O+O as (x*~+.z*~)-+ccI ,  

A(&@+ QX*) = 0 (x* 2 1)) 

and similarly for the second 

@.,*p + a),*,* + (k~M2//34)  a) = 0, 

@ z* --(l - 2WC/p)exp[- ikX*/~2]  z* = 0 ( -  1 < X* < 1)) 

A(ik//32CD+ a,*) = 0 (x* 2 1 ) )  

exp [ ikMr/P2] .  CD -+ 0 r2 = ( x * ~  + . z * ~ )  as z -+ & 00. 

From these sets of equations it is at once evident that the two cases, subscripted 
0 and oc) as before, are identical for imaginary 

v0 = ikmM,/Pi (19 )  

and ko = k* lP i>  (20) 
provided the solutions have the required properties at infinity. In  this case the 
relation between the loading coeilicients per unit upwash is, from the linearized 
pressure equation ( 7 )  

Alternatively by starting from Possio's formulation of the two-dimensional 
unsteady compressible flow integral equation and using the relationships ( 1  9 )  
and ( 2 0 )  the integral equation for the incompressible oblique gust (Graham 
1970a) is arrived at, as follows. 

Watkins et al. (1955, equation B 18) have shown that Possio's integral equation 
ca.n be written as 

CAPO = Pm exp [ - ik, 1M: x*/P:] CAP exp [ - iu,y*]. ( 2 1 )  

1 J' Ap(x*) K(xi -x*)~x* = W ( X ; ) ,  the upwash. 
4lr -1 

The kernel function K(X; - x*) is given by 
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where HF) are Hankel functions. These Hankel functions can be replaced by the 
modified Bessel functions K ,  by means of the identity 

(%In-) e+invK;(ix) = Hg)(x) .  

K;(x) is the analytic continuation of K,(x), defined by 

KA(z emvi) = e-mnniK,(z), x real, positive. 

We now make the following substitutions: 

Ap(x*) = (SIP) exp [ i k M 2 ~ * / P 2 ]  {fl(x*) - 2ik’f2(x*)}, 

F(x*) = f1(X*) + 4 V ’ 2 f 3 ( X * ) ’  

where fl(x*) = 2df2/dx* = 4d2f , /d~*~,  k‘ = kip2 and v’ = kM/P2, 

and then integrate (22) appropriately by parts to obtain 

x K,[iv’( 1 - x,)] + 2ik’f2( 1) v’2/k’2K0 [iv‘( 1 - .,)I 1 
+(1 - ~ ’ ~ / k ’ ~ ) / ~  -1 iv’exp[-ik’(l+x)]Kl[iv’(2+z-x,)]dx). (24) 

Equation (24) is the same as that governing the incompressible singularity 
distribution for an oblique sinusoidal gust, w = exp [i(w’t - h‘z -p‘y)] where 
A’ = 2k‘/c, p’ = 2iv’/c and w‘ = h’U, and the load distributions are related as in 
(21). The difference between the two cases lies in the fact that the kernel function 
of (24) is actually a Hankel function while that for the incompressible oblique 
case is a modified Bessel function. However, since the fundamental singularity of 
both is the same (1/x as x + 0) the same method of solution can be applied to 
both cases. 

Because of this fundamental similarity between the two cases it is reasonable 
to expect that Reissner’s (1951) analytical solution for compressible two- 
dimensional problems might be applicable to the incompressible oblique problem. 
Although in the latter case the potential equation is no longer a wave equation, 
transformation to elliptic co-ordinates does still yield two Mathieu equations of 
the form 

and 

In these equations q is the separation constant and the parameter ( -  x2) is 
negative as opposed to the positive parameter which occurs when the equations 
derive from a wave equation. Solutions can be found to these equations satisfying 
the appropriate boundary conditions. The analysis follows Reissner’s except that 
the solutions are in terms of Mathieu functions with negative parameters and the 
upwash is of the convected rather than flutter type. This possible extension of 
Reissner’s solution is only mentioned here briefly since the integral equation 
method appears to be the faster for the actual computation of load distributions. 

+ (q + x 2  c0s2 6) G = 0. 
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4. Calculated values of lift coefficient 
Using the method of solution of the integral equation (24) developed for the 

incompressible oblique gust, some values of the induced lift coefficient per unit 
upwash, C,, have been computed for the compressible two-dimensional gust at  
Mach numbers of 0,0.2, . . . ,0*8. The results are shown in figure 4. The zero Mach 
number values agree with the solution given by Sears (1941). Those for 0.2 and 
0.4 illustrate the effect of compressibility even a t  small values of Mach number as 
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FIQURE 4. The effect of compressibility on Sears's lift function. -0-, computed 

/ 
4 

values ; -i-, some values from equation (25). 

the parameter Mk increases. For values of this parameter not too large and for 
M2 < 1, compressibility appears more to affect the phase of the lift function in 
the form of a lag than the amplitude, except in the quasi-static region. Also for 
any given finite, non-zero value of k the maximum amplitude of the induced lift 
coefficient occurs at  a Mach number different from 0 and 1. As M + 1 the com- 
puted values of lift coefficient approach the sonic value 

C, = (2(1 -i)/k).exp (ik)(C([2k/n]&)-iS([2k/n]t)), (25 )  

where C and S are Fresnel cosine and sine integrals. This linearized solution is valid 
for M = 1 (Landahl 1961) provided 

k B Iw/UIQ. 

By calculating in a similar way the appropriate load distributions, compressible 
two-dimensional or incompressible oblique, and employing the similarity rules 
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stated above, it is possible to obtain the response of a wing of infinite span to an 
arbitrarily oblique sinusoidal gust at  any subsonic Mach number under conditions 
for which linearization is realistic. From such results the induced loading can be 
evaluated for an arbitrary convected gust by Fourier superposition and more 
importantly the spectrum of the loading induced by turbulence. The same results 
can also be used in the manner detailed in another paper (Graham 1970b) to 
compute the loading induced on a rectangular planform wing of arbitrary aspect 
ratio under similar circumstances. 

5.  Conclusions 
Similarity rules have been given for the loading induced on a thin two- 

dimensional aerofoil passing subsonically through an oblique sinusoidal gust. 
By means of these rules all those cases, for which the gust parameter 6' ( = k M / v p )  
takes values less than one, can be related to an incompressible oblique problem 
%Those solution is known. Similarly all the other cases, for which 8 > 1, can be 
related to a compressible two-dimensional problem. An efficient method of solving 
this latter problem has been indicated and some values of lift coefficient calcu- 
lated to illustrate the effect of compressibility on the lift coefficient induced by 
a two-dimensional sinusoidal gust. The similarity rules given are also applicable 
to linear cascades and two-dimensional swept wings. 
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